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Abstract

The asymptotic long time behaviors of a certain type of non-autonomous dissipative semilinear wave equations are stud-

ied. The existence of uniform attractors is proved and their upper bounds for both Hausdorff and Fractal dimensions of uniform are given

when the external force satisfies suitable conditions.
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In the past two decades, the asymptotic long
time behaviors of autonomous dissipative wave equa-

[1~6] " Since the defini-

tion of uniform attractors was given by Haraux!"?,

tions were studied extensively

most researchers agree that the asymptotic long time
behaviors of non-autonomous dissipative evolution
systems can be described by uniform attractors. Re-
cently, Chepyzhov and Vishik studied asymptotic
long time behaviors of non-autonomous dissipative dy-
namical systems[s’g].
dealt with parabolic equations, for example, the well-

But most parts of their papers

known Navier-Stokes equations and a certain type of
reaction-diffusion equations. In‘ this paper, we ex-
tended their results of the existence of uniform attrac-
tors to general dissipative semilinear wave equations
and developed a method to estimate the upper bounds
for Hausdorff and Fractal dimensions of uniform at-
tractors of a certain type of dissipative wave equa-
tions, i. e the general non-autonomous semilinear
wave equations as follows:

2
Tt o Q- Bu () = flauo),
in 2x[r,)
qulz, ) = ug(x), (D)
ulre) -y,
u =0, on AN X[r,),

where « >0 is a constant, 2€ R"(n=>=2) is a bound-
ed domain with smooth boundary 802, € R is the
initial time.

1 Preliminaries

First, let us introduce some notations and func-
tional spaces as the following: H*(2), Hs(Q2), L?
(02) are usual Sobolev spaces.

V= H)(Q), H=L¥2), « =2
Au =-Au, D(A)=H*@Q)NV,

Ey=VXH, E,=D(A)x V.
V' =H () is the dual space of V, and ¢+, *) de-
notes the dual product between V and V',
((u,v)) = (Au, v),
lall?=u,u))y, Yu,v€V.

, (*,*)g denote the norm and inner product of H

respectively.

As is well known, A is a positive unbounded op-
erator in H with a compact inverse, and it has eigen-
values {2;} and eigenvectors {w,| satisfying:

ij = A]'(Uj, ] = 1929“"
0< /11</12<"‘</1,'<"',

So we can define A*(s € R) as
A’u = le(u,wj)o%,

1=1

Yu €& D(A%).

Let
V,, = D(A*),

(u,v)as = 2 A7 (s 0;)0( 0, @))o,

J=1

Yu,v € V,,.

2
| u IZS = (u’ u)Zs’
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Especially,
1
V=D(A2)’ ((."))2(.).)1’ “'“=|.|1

For any Banach space E, BC(R, E) is the Ba-
nach space consisting of all bounded continuous func-
tions from R to E with the norm | * g 5y =

max,c gl g, [+|g is the norm in E.

Let T(Ah) be a translation operator along time-
axis defined as
T(hR)f(x,t) = flz,¢t +h).

From now on, we make the following
Assumptions 1

(i) f(x,t) is almost periodic or quasiperiodic in
time ¢,

(ﬁ)fhnt)GBC(R,H),Qﬁ%?lléBC(R,
H),

(iii) there exists GE C*(V;R), G(0)=0 and
pECYH(V;H) such that g(¢) =G (¢) + p($),
Vé€ V and G (resp. p) is bounded from V into
R (resp. H) satisfying

G
e =0
and there exists ¢{ >0, ¢2>0, 7,>0 such that

(¢,8($))o—c1G($)

Y
1_
p($)1<c,(1+ |G(HH)2 Y, VeV,

im =0,
[ ¢l oo

(iv) g is a C'-bounded operator from V into
H, Frechet differentiable with differential g’. g
maps D (A) into V and is Lipschitzian from the
bounded sets of D(A) into V and from the bounded
sets of V into H. There exists 7,>0, 73E R, ¢3>
0 and for every R=>0, there exists ¢ = co(R) such
that

1 g($) | <co(R)A+1 A 1),

Vé € D(A), ll¢ll <R
L g(¢) — gle) |
<1+ sl +lell)lé-—9l,
Vé, o€ V.

(v) g’ is a bounded continuous mapping from V
to AV, H) and a bounded mapping from D(A) into
AV,, H) for some s€ [0,1) and from V to X H,
V—1+y‘) for some 0< 7,<1.

Let
S=closure of | T(h)f(x,t)=f(z,t+h),
RER} in BC(R,H).

Definition 1. A two-parametric family of opera-
tors |U,(z,z),t=t,7r€ER}I(6€ Z): E—~E are
called processes if:

(i) li_r.nU,,(t,r)v=v, VvEE,

i) U,(t,s) U(s,t)=U,(t,7), Yt=s=
T, TER,

(ii1) U,(r, t) =1, I is the identity operator in
E, t€R.

Definition 2. A set P belonging to a Banach
space E is said to be a uniformly attracting set for a
family of processes [ U,(t, ) (c€ 3): E—~E with
respect to = if for any bounded set BE E,

limsug distg(U,(¢,7)B,P)=0, Vr&R.

t—>0g&

Lemma 1. Under Assumptions 1, V (ug,, u;,)
€ Ey, there exists a unique solution u{x,t) to Eq.
(1) satisfying u(z,¢)E BC([7r,*); V), u'(x,t)
€BC([z,>);H). Moreover, if (ug., u1.) € Eq,
then u(x, )€ BC([z,©);D(A)), u'(z,t)€E
BC([z7,®); V).

This lemma can be proved by use of Faedo-
Galerkin method!"!. We omit the proof here.

From this proposition, we can define a family ;>f
processes | U,(t, )} (s € Z) such that
(u(z,t),u'(x,2))=U,(t, ) (ug,, u,,).

Lemma 2. The family of processes { U,(¢t, )}
(6 € 3) have a uniformly attracting set
9= {(&,9) € Eo: lall?+151*<pgl,
2

4 R
where p(Z) =3 (1+ e, 2)2(C3+:|f|BC(R,H) ’

¢,>>0 is a constant.

Proof. Let eo=min(l,ﬂ), 0<e<eg, v=
2°2a
u’ + eu, then Eq. (1) can be written as

u +eu-v=0,
{v' +(a—e)v+(A-ela-e)u+ g(u)
= flx,t).
(2)
From (iii) of Assumptions 1, there exist two con-
stants k,, k; such that
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G(¢)+ )|I¢”2+kl 0

8(1+
($,g($))o — c1G(8) + g 12+ k,>0,

Yée V.
(3)

Taking scalar product of V with # on both sides
of the first equation in (2) and scalar product of H
with v on both sides of the first equation in (2) and
summing resulted equations together yields

Ld e ju)refull?+(a-e)lol?

2d:
—ela—€e)(u,v)o+(glu),v)o=(f,v)-
Noticing
ellull?+(a—-€)lvi?2—ela—e)u,v)
2%“u“2+%|vl2, (4)
and
(g(u),v)o

=(G(u)+tplu),udote(glul),ul
=26+ (p(u), v
~e(p(u),u)ote(glu),u)

d 37
2«(1_I:G(u)-62(1+|G(u)|)2 "ol +elul)

+ec1G(u)—§” u |l - ek,

-7,

Qd%G(u)—cz(l+ |G(u)|)%
(lovl+elul)
+ec1G(u)—’Z— | ull?~e(ha+tciky),

weget

> dz(Hull o 2426+ lull?

+ % b v 12+ ec;G(u)
Lelky+ ciky) + (fiv)g

1,
+ (1 +Gu))? "(Jovl+elul).

(5)
On the other hand

1-7
(1 +1G(u) D2 (I vl+elul)

<§Iv|2+ﬁ||u||2
+e(1+1 Glu) DT,
and by (3),
| G($) 1< G(9) +—“ $ 112+ 2k,
Vé € V.

Thus
c;(1+1 G(u) 1)
1—27'l
<< 1+2k1+G(u)+i|luH2
Elull?+ 560 + o

From (5) and above inequalities, we get

2 2 £ 2
LAz riore26G) + Slul
+ % | v 1%+ %ECIG(u)
< 2 2
= E(kz + C]kl) + a [ f ’BC(R,H) +c
(6)
Let Y=l u |2+ [v]?+2c,G(u) +2k,220, thus
from (6), we deduce that
dY ;4 2
o TeY<at gy (D
where a2='4‘, c3=2€(k2+c1k1)+2c;+2a2k1.

From (7) and Grownwall inequalities, it follows
that
Y(2) <Y (r)exp(— ay(t - 7))
+alz €3 +§ " Vpecr, my
- (1 —exp(~ ay(t —1))),
where Y(z)= | ug, | 2+ lu,, + eug, |
+2c; G(uor) +2k.

Therefore
limY(z) <

t—>00

’ 4
s C3+_|leC(RH))

Thanks to Y(Z)Z_ la(e) 12+ 1vl?, we get

llm( la(e) 2 +1 v 12) < po, (8)

where p0=‘3—(1+€'11 2) (C3+_a_|f|BC(R.H))'

Let
9= (@,%) € Eo: llal?+131><pgl,
then for any bounded set BCE, we have
llmsugdlstE(U(t r)B,D) =0, VYr€R.

So system (1) has a uniformly attracting set 9. The
proof is completed.

For later use, let us give priori-estimates of
u(x,t) and u'(x,t) in E;.

Taking the scalar product of V with Au on both
sides of the first equation in (2) and the scalar prod-
uct of H with Av on both sides of the second equa-



Progress in Natural Science Vol.13 No.2 2003

103

tion in (2) and summing resulted equalities together,
we obtain

lii‘(IAu|2+ loll2) +¢t Au 1?

2 de
+(a-e)llvll?~ela—e)(Au,v)
= (f,Av)o + ((g(u), v)). (9)
For 0< e<gy, we have
el Au 2+ (a—¢) [ wll?=-e(a—e)(Au,v)o

Z%IAu l2+%||'v||2

and

(f1 Ao = 22 (f, Audo = (', Awy + (f, Au)o

d
<G, (frAu)e+ 5 1 Au l?

4 , .2 2
+ e vf 'BC(R,H)+4€|fIBC(R,H)'

On the other hand, if inT, ulrl belongs to a
bounded set B of E;, then B is also bounded in E,
and there exists to=>7, when t=>15, | u(2) |2+
lu’(£)12<20;. From (iv) of Assumptions 1 when
t ==ty we obtain

Il gCu(e)) | < co2po) (1 +1 Aulz) 11772,
Thus if t=¢¢, it follows that
| ((g(u),0)) 1< co(2p0)(1 +1 Au )72 ]| o |

o 2, £ 2 ’
Sy loll?+ g1 Au 12+ q.

From (9) and above inequalities, let a; = %, we de-
duce that
S0 A 12+ v )2 =205, Au)y)
+a (1 Au 12+ o ?)
8

<2 +8 | f1I° °

+ 2702
BC(R,H) € f BC(R, H)

S0 Au-fF1 e lul?)
+a (1 Au—f12+ [lvll?)

) 2
S2c0+ B+ a) | flgnnm
8 2
t e ' Vacr,
20 f o ! F Vaeqr,my -

The Grownwall inequalities imply
lAu(2) = f(e) 1P+ [ v(2) |12
S(1Au(2g) = fFG) P+ L o(2e) 1)
exp( —a;(z—29))

2

+ 2c;+ (8¢ + al)llec(R,H)

8, .2 ,
+:|f lscer.in ¥ 21 L acir,mny | | Becr, )
(1 -exp(—a1(z—tg))).
So

lim(1 Au(e) = f() 1+ T (D) 1) < o3,

where
2 -1 2
p1=(1+€/\12)
’ 2 8 ;12
. 2CO+(8€+a1)lf|BC(R,H)+_€—|f|BC(R,H)

+ 20 flgocr, iV per, ) -

Therefore,
lim(1 Au(e) 12+ [ u(2) 12) <pj, (10)

2
where o5 =3p} +2I f| BC(R,H)"

Next we consider the following systems:

a%a oa ;
a—zt—-}-agt“—Aa:O, anX[T,oo)9
u(z,7) = uy (z), (1)

ﬂl(l‘, T) = u‘lz‘(I)’

21y, =0, ondl x[z,),

2%a ou _
gf+ag—Au=f(r,t)—g(u),
in 2 X [7,), (12)

a(z,7) = a'(z,7) =0,
@15 =0, ond2 x[r,0).
Let o =2  + ea, and due to (4), we obtain
la(e) 12 +1 0(e) 12
K (Mg, 1241wy, + eug, 12)
cexp(— ay{(z ~ 7). (13)

Taking partial derivative with respect to ¢ on
both sides of the first equation in (12) and denoting
W= vyields

2~ ~
221:) + aaa’%} -Aw = f - g'(u)u,
w(x,t) =0,
W (x,r) = flz,7) — glu,,).

(14)

Recall (v) of Assumptions 1, we know f —
g (u)u'€V_y,, . Forany {ug,, uy,.1 € B, where
B is any bounded set in Eg, from Theorem 2, it fol-
lows that there exists to (B) =17, || u(z) |2+
lu’ (£)12<2pf if t=2¢(B). So f —g'(u)u"€BC
({z, >); V“1+74)' From (iv) of Assumptions 1,

we get f(x,7)~ g(uy,)€ H. Similar to Lemma 1
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and from the following estimates, system (14) has a
unique solution @ (z, t) € BC([r, ©); v, )

%' (z,1)EBC([r, )5 V_i,,).

Letting @ = @ + e@ and taking scalar product

of H with A" '@ on both sides of the first equation
in (14), we obtain

2

d,, .2 . 2 _2
gzl @l Dre@ll +1wl )

;12 , 2 ,
S Vsewom g (“)lsm,vr_l)l” 2.
4

If t1==2¢4(B) holds, from above we know

;2 , 2 )
I f lBC(R.H)+Ig(u)‘:Z(H.Vilﬂ)‘u !
4

, 2 2 2
S oo + 400c3(2p0),

where ¢4(2pg) is a bounded function of 2p¢.

So
@)1 @) 1
< U @(eo) 13, +1 BCeo) 17, )
< exp(— a1(z — tg))
+ (1 f liC(R’H) + 4pgea(2p0))
< (1 —exp(— a (¢t — £4))). (15)
Then

lim(@w(z) 12 +1 @ (¢) li

- Vs

4_1)

1
- ;2
< 4p5(1 + €A 2)ca(2p0) +1 f Vg iy

(16)
Due to the first equation in (12) and (iv) of Assump-
tions 1, it follows that

lim 1 @(2) ],y +1a () 15 <es, (17)

]

where ¢s is a constant depending on a«, po and

\f/ |BC(R,H)‘
2 Almost periodic case

In this section we prove the existence of uniform
attractor of system (1) when f(x,t) is almost peri-
odic in time ¢ .

Denote ;= 3. In view of definition of 5, we
have
VA lperomy = Voo, my
oh af
ot |pc(r, my Ot |pc(r, H) 2

(18)

From Lemma 1, we can define a family of processes

!Ual(t, )1 (s, € 3,) and a semigroup S(¢ — ) as
the following:
(u(t),u'(t))=Ual(t,r)(u(),,ulr),
(a(2),a’ (£))=S(t—7)(ug» uy,)>
and a family of operators if}',l(t, ) (61 € 3) such
that
(a(2),u’(2)) = Ual(t,f)(u()r,ulr),
then
U,,‘(t,r) =S(t-1)+ U,,l(t, ).

Notice that X; is a compact metric subspace of
BC(R, H) under the norm | - IBC(R.H)UO]

Definition 3. A closed set Aalch is said to be
the uniform attractor of the processes | U, (t, o)

(6, € ), with respect to Z; if it is uniformly at-
tracting with respect to 3, and it is contained in any
closed uniformly attracting set A" of the processes

%U"l(t’ 2‘)}(61621).

Let us introduce the Kuratowski-measure « ( £)
of any set Z in a Banach space E .
«(E) =inf{r: there is a finite covering of £
by balls of radius less than r in E |
Then, «(Z) =0 if and only if 5 is compact in E.

Theorem 1. The processes | U, (¢, r)} are uni-

formly asymptotically compact in E¢ with respect to
21 as t—>o0,

Proof. For any bounded set BCE,, (__Jal(t, T):
B is compact in E( because the imbedding V1+14 X

Vn‘—) Eq is compact and inequality (17) holds.

So
K(Ual(t, T)B) = 01

uniformly with respect to £;.
From (13) «(S(z — ) B)—0 uniformly with re-
spect to X, as t—°0. In addition,
K Ual(t, t)B)<k(S(t—-7)B)+ K([_]al(t, )B).
Then «( Ual(t, ) B)—0 uniformly with respect to
S, as t—>00. So the processes | U, (¢, r)} are uni-

formly asymptotically compact in E{ with respect to

z.

Lemma 3.1 Let a family of processes | U, (¢,
7)1 (s € ) acting in the Banach space E be uni-
formly asymptotically compact with respect to = and
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(E X 3, E)-continuous. Also let = be a compact
metric space, T(t) a continuous invariant (T (z) 3
=3) semigroup on X satisfying U,(¢t +s,r +5)=
Uryo (25 7)(5=0), then the semigroup S(t)(u,
0)=(U,(t,0)u,T(t)s), Yt=0, (u,0)€EEX
S possesses a compact attractor A satisfying S(t)A
= A(VY t=0), moreover, H A = As is the uniform
attractor of the family of processes | U, (¢, )} with
respect to ¥, where H :(u,0)= u is a projecting
operator.

Theorem 2. When f(x,¢) is almost periodic in
time ¢t and satisfies Assumptions 1, then the semi-
group

S(£)(u,01) = (U, (£,0)u, T(£)oy)

(u,01) EE¢x 3, t=0
possesses a compact attractor A; in Eqg X BC(R, H).

Moreover, A21 = ]I A; is the uniform attractor of

the family of processes { Ual (z, )}, where H ;

(u,01)=u, V{(u,0,)€ EyX 2, is a projecting op-
erator.

Proof. From equality (18) and Theorem 1, we
know the processes i U’1 (t, r)} are uniformly

asymptotically compact with respect to ;. X; is a
compact subspace of BC (R, H) under the norm
|| gc(r, 1y - From Lemmal, Vo, €3y, U’1(t +s,

T+s)= UT(S),I(t, 7)(s20) holds. Hence accord-

ing to Lemma 3, we only need prove the processes
{ Uul(t, )} are (E¢ X 2, Ey)-continuous.

Let #4(x,t), u(x,t) be the solutions of the
first equation in (1) with corresponding external
force terms f; (x, t), f,(x, t) and initial data
(o1, #110)> (wgpp> #12.) € Eq.

Denote g = uy(x,t) —uy(x,¢t), flz,t)=
filx,t)— fo(x,t), then g satisfies the following
equations:

2
{g—t?wg—‘t’-ww<g(u1)—g<u2))=?(x,z>,
g (z,t)=uyy, — upe.

(19)
Taking scalar product of H with ¢” on both sides
of the first equation in (19) yields
2L gl?+1g 1) +alqg 12
=—(g(uy) — gluz),q")o + (£, a0 o.
(20)

g(z, )= Uprr — Upaoo

Recall (v) of Assumptions 1, we know
lg(ui(2)) = glur(eNI<es(1+ | uy(2) 112

+ L aa(e) 17311 wy(2) = uae) |l -
From (20), Lemma 2 and the above inequality, we
get

d%( lgl?+1q 1%

<esgl2+1g i+ 21712,
(21)

where ¢5(¢) is a bounded function of z.

Thus from (21), it follows that
g(e) 12 +1 q"(2) 17

< (lg(e) N2 +1¢g'(x) 1%

. exp(srenﬁ?ct]é‘s(S)(t - 1))

+Jr I £(s) IZdS(Sren[etl_:E]h(s)(t - 1)),
i.e.
| u () — uy(2) ”2 + u;(t) - u;(t) 2
< Uprr — Uo2r I 241 Ui — Ug2e
+ (t - T) I fl _f2 |§3C(R,H))

. e"p(,g%?,’f]“(s)(’ -7)).

| 2

Then for any fixed time ¢t =17, || u,(z) — us(2) |l
—0 and | u; () — uy (2) | =0 when I ug, —
wgp s Tuyye = upy =0 and | f1 = f2l gy ™0-
So the processes {Ual(t, )} are (Eg X 21, Eg)-con-

tinuous. The theorem has been proved.
3 Quasiperiodic case

Assume that f(x,t) is quasiperiodic in time ¢,
hence, there exist a group of rationally independent
real numbers ay, ***, a; satisfying

Flx,yagt, = ait + 21, -, apt)
= f(zyart, >, ait,, ag)

(1<i<<ek).

Denote
a = (ag, "),
w(z)= (wi(t),, wy(2)) = [at + wy)
= (at + wo)mod(2m)*,
wo = (wgy, =, wg,) € TF = [0,2x]%,
F(z,w(t)) = f(z,t).

In addition to Assumptions 1, we make the following

;t = (;lt’ "',;kt),

Assumptions 2.
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OF (x, w(2)) .
OF(z.wlt)) ¢ pocpt gy, (i=1,-,k).
aw,-

Let 3,=2, by virtue of definition of X, it is clear
that

| A |BC(R.H): |f|BC(R.H)’

oh of
A = , YhEZ,. (22)
}af Bo(R, D |9 Ipe(r, ) ?
Moreover, there exists w * € T* satisfying
h(kr,t):f(1,3t+w*). (23)

From Lemma 1, we can define a family of processes

U, (£, ) Quges uy,) = (ulzx,t),u' (x,t)) (0, €
Z5). But from (23), the processes Uaz(t, ) can be

transformed into the processes U, (t, ) (w € T*)
such that U, (¢, ) (ug,, uy.) = (u(z,t), u' (x,

t)).

YwET, Ti(t)w=[at+w], then T;(t)

is a continuous invariant semigroup acting on T*.

We can define the semigroup S (t) acting on
E¢X T* as the following:

S(t)(u,w) = (Uy(2,0)u, T1(t)w),

V(u,w) € Eg X T,

Because T is a compact set of R¥, according to Lem-
ma 3, in order to prove the existence of uniform at-
tractor we only need prove | U, (z, v)| are (E4 X
T*, Eg)-continuous. If wy, w, € T, |w; — wal—
0, then from Assumptions 1, | f(x, at + wq) — f(at
+wy) I gor, )y 0. Therefore, by a similar argu-

ment of Theorem 2, we have

Theorem 3. When f(x, t) is quasiperiodic in
time ¢ and satisfies Assumptions 1, the semigroup S
(6)(u,w)=(U,(t,0)u, T;(2)w) possesses a
compact attractor A, in Eg X R*. Moreover, H A,
= A7 is the uniform attractor of processes | U, (¢,
), €T V(u,w)€EEgXx T, H s (u, w)

= u is a projecting operator.

Now we give the upper bounds of Hausdor{f and
Fractal dimensions of A7.

Theorem 4. The Hausdorff and Fractal dimen-
sions of uniform attractor At in Theorem 3 satisfy the
following inequalities:

du(A7) < dy(A) <k + m,
dF(AT) < dF(Az) < 2k +2m,

where m satisfies the following inequalities,

2 212 2 2\2
s G7 a” 72 +£_)
2 .2 1+/11 k+2 2 1 A eAqlnm
(n=2and s=0),
P ) 212 5 ) -
8 G~ a 72 a” I—Mn
2 o 1+'11 E+2 02(1+A1 m
(n#2 or s70).

Proof. First, we transform the system (1) into
the following autonomous system through the semi-

group S(t)(ug, w0)=(Uw0(t,0)uo, T1(t)wo):

ﬂ+aa_u—Au + g(u) = F(z,w(t))
ot? ot g ’ ’
dw(z) -
< = a
dt
(ult),u’(2)) ly=0 = (uo1,uoz) = uy € Ey,
w(t) I, = wy € T,

(24)
Then, let
y(t) = (ulz,t),v(x,t), w(e)),
M(y(t)) =(v —eu, — (a —€)v
- (A -c(la—€))u—~glu)
+ F(z,w(2)),a)7,
where v(x,t)=u'(x,t) teu(x,t).
Thus the system (24) can be rewritten as
oy (¢
{—yét—z = M(3(0), 25)
¥(t) 1,20 = yo = (uor» vo, wo),s

where vg = ugy + eugr-

Let y(£)=(u(t),v(t), w(t))T be the solu-
tion of system (24) with initial value yo&€ A,. From
Lemma IV.3.5, (u(t), v(t)) € E, and satifies
(10). The linearized equation of (25) at y(t) is

{%ﬁl = M (5 ()= (o),

2(t) 1,0 = zo.

(26)

In Eq. (25), 2(2)=(21(2), za(2), p (e )7,
p(e) =Cui(e)y s e (£)), zo= (zo1s 202 o) €
EoX Tt M (y(2))z(2)=(2,(2) —ex1(2), — (a
~—e)zo ()~ (A—-e(a—€))z(t)—g (u) 2,(2)
+F.0,0)7.

For simplicity, we introduce some notations as
the following:

((E, C),(E’E))Eo = ((Eyé)) + (C,Z)Z,
V(Ea ;)’(é’f) e EO;
| Con ) g = (o), (o)),

(('Ul’f-ll)’ ('UZ’ #2)) = ('Ul’ '02)}50 + (#1’#2)["‘,
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V('Uly /11)1(1)2) #2) 6 EO X Rka
where (*, *) gt is the inner product in R*.

In the following let us give the estimate of

(M’(y(t))z, z)

At first, we recall that
(M (y(t))z,2)
=((22(2) —ex1(2), 21(¢)))
+(—(a-e)z(t)—(A—-e(a—e)I)z(t)
— g (u) 2y () + Forpy 22(1)),
hence
((z2(2) — ez (1), 2:(2))) + (= (a — €)z2(2)
- (A —ela—e)D)z(2), z2(t))2
- ay (N z1(e) 12 +1 22(2) 12),
(g (u) « z1(2), z2(2))2
< g (u)z () 11 22(2) |
<m0 17+ 2—}; g (u)z () 12,
From (v) of Assumptions 1 and estimates of (u (x,
t),u (x,t)) in Eq, let
= | g'(v) Lav, 1y < .

SUP
vE D(A), [ Avi<p,
Then,

(M (y(t))z, =)

Sz 12 +1 22(2) 17)

2
+ 2 () 1P+ b—G'(zz(t) 12

201 $ 2

+ L0

Top

where b is any positive constant,
k oF |2 12-
G=|2 .

S 19wl g my

Denote
(M (y(2))z,2)
= (M (21, 22), (21, 22))1.;0 + (Mlﬁt’/l)R",

—_ 2 _ 5
M(z1, z2) :(— %21(1) + iaLlA H z1(2),

( % - % 22( t ) ) )
- G
My = ﬁ'Ik#’
where I, is the identity operator in R*. Then the op-
A M, o)}
erator M; = 0 N, is diagonal. (zy (2),

212(t),0),"', (zil(t)y ziZ(t)a 0)’ R (z(m—k)l(t))
Z(m-1)2(t), 0) are the corresponding solutions of
Eq. (26) with initial values ( &y, §12,0), --+, (&1,

£i2:0), =y (Em-0)1> E(m-1125 0),
€12)s s (Em-0)1» §(m—-p)2) are linear independent
bases of Eg.

where ( &q3,

Let z; =
1) s $a-

of spaniz(t), -

(215 12)(1< <m - k). ¢1—((P1,
2= (@m-k> Jm -1) are orthonormal bases

’Em-k(t)}! ﬁm—k+1)"'a pm are
Then (¢1,0),'“y(¢m—k!
(0, f,,) are orthonormal in

orthonormal bases of R*.
0), (0, 2 gs1)s s
Eo X R*. From Theorem 3, the semigroup S(¢)(u,
w) = ( Uwo(t, 0)u, T;(t)wy) possesses the com-

pact attractor A,. Moreover, dimAr<idimA,.

Denote
=($,,0)(i = 1,,m — k),
0; = (0, 2)(m -k +1< i< m),
qm = lim sup

sup
T 16,1  #<1 3 €A,
]

1 (T ,
H S (516,00

In order to give upper bounds of Hausdorff and Frac-

tal dimensions of A;, we need the following lem-
[1]
ma

Lemma 4. A, is the compact attractor of the
semigroup S(t), and there exists an integer N >0
satisfying gy <0, then the Hausdorff dimensions of
A, satisfy

dy(A)) <N
The Fractal dimensions of A, satisfy

de(A) <N

1+ max —J_(q')Jf)
1<j<n-1 | gN |

Since

Z(M,(y(t))eia 6;)

-k
a Z
<=5 2 e 2+ 1?) + 5 Zlfp,
1

m—k
+~b—292 | 7 24 5y
i=1

<—“41 (l|go,||2+|7;,|)+‘7—§:lgol
G2 ai
+— —_— —
o Fllett =55
_ o G? 2K 2
i GO R e B mO YRR
s _ G* 72 et
< 4(m k)+a1k+2a A;

and (see Ref. [1])
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3

-k . 1_2(]—:)
A< e (m - BT

(n#2o0rs #0),
m-k
Zk;lgﬂlln(m —k) (n=2ands =0),

7=1

where ¢ is a positive constant. Then,
2 2

~ = k) + S+ A in(m — k)

4 ay 20’1

(n=2and s =0),

G*
aq 2
(n#2 or s70).
Let m = m — k and choose 7 sufficiently large so
that,

~
-

I <Y
—%(m—k)"'

G*hk ¥ lnm _ 1
af m * Zafc,11 m S 4
(n =2ands = 0), (27)
GZ b 2 _2(1-5) 1
— T+ A im n < —
af m 20% ! 4
(n#2o0rs#0). (28)

It is easy to show that

3
qm <_ o Mai,

8
and for j=1, -, m,
1 (ql)+
(g 4 mai, 1<rjn£3.{~1 [ gm | <1
Choose € = €y, then a; = min l,h and
8’ 4a
8 4a

We can choose a larger m by replacing ;1‘ in (27)
1

2
and (28) by %(14':_), then
1

Gy et )y 210 )
ZBP(HM k+27i% 1+ | erilnm
(n=2and s=0),
= 2 242 2 2 21-3)
8 G- a’ 727 a’) 1-a
2 a? 1+'11 k+2 a? 1+/\1 "
(n#2 or s¥#0).

(29)

2 2 _2(0=-5)
k+’aL€A1(m—k)1 n
1

Choose suitable m satisfying (29), then from LLemma
4, we get

du(A7p) < dy(Ay)) <k + m,

dp(A7) <dp(Ap) <2k +2m.
This theorem is completed.
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